Practice 13

Topic: Research on stability by the second (direct) method of Lyapunov, using Schultz-Gibson's method

Example Let system dynamic equations in the state-space with are set the following look:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1} x_{2}^{2}+x_{2} \\
\dot{x}_{2}=-x_{1}^{3}
\end{array} ; \quad x \in R^{2}\right.
$$

Investigate on stability by the second (direct) method of Lyapunov, using Schultz-Gibson's method.

Algorithm and solution

1. The gradient of function of Lyapunov in the form of Schultz - Gibson as follows registers:

$$
\nabla V=\left|\begin{array}{l}
\alpha_{11} x_{1}+\alpha_{12} x_{2} \tag{**}\\
\alpha_{21} x_{1}+\alpha_{22} x_{2}
\end{array}\right|=\left|\nabla V_{1}\right|
$$

2. The full derivative of function of Lyapunov is defined:

$$
\begin{aligned}
& \frac{d V}{d t}=\nabla V^{T} \dot{x}=\nabla V_{1} \dot{x}_{1}+\nabla V_{2} \dot{x}_{2}=\left(\alpha_{11} x_{1}+\alpha_{12} x_{2}\right)\left(-x_{1} x_{2}^{2}+x_{2}\right)-\left(\alpha_{21} x_{1}+\alpha_{22} x_{2}\right) x_{1}^{3}= \\
& =-\alpha_{11} x_{1}^{2} x_{2}^{2}+\alpha_{11} x_{1} x_{2}-\alpha_{12} x_{1} x_{2}^{3}+\alpha_{12} x_{2}^{2}-\alpha_{21} x_{1}^{4}-\alpha_{22} x_{1}^{3} x_{2}<0
\end{aligned}
$$

3. It is necessary to define such $\alpha_{i j}$ values that the full derivative of function of Lyapunov was strictly negative, i.e. $\dot{V}(x)<0$.

Let $\quad \alpha_{11}=1 ; \quad \alpha_{12}=-\alpha_{21} ; \quad \alpha_{12}=-1 ; \quad \alpha_{21}=1$.
Then

$$
\frac{d V}{d t}=-x_{1}^{2} x_{2}^{2}+x_{1} x_{2}\left(1+x_{2}^{2}\right)-x_{2}^{2}-x_{1}^{4}-\alpha_{22} x_{1}^{3} x_{2}<0
$$

From here

$$
\alpha_{22}=\frac{1+x_{2}^{2}}{x_{1}^{2}}=\frac{1}{x_{1}^{2}}+\frac{x_{2}^{2}}{x_{1}^{2}} .
$$

At such choice of coefficients $\alpha_{i j}$ we will receive the following:

$$
\frac{d V}{d t}=-x_{1}^{2} x_{2}^{2}-x_{1}^{2}-x_{2}^{4}<0
$$

4. It is necessary to define Lyapunov's function and to be convinced that $V(x)>0$.

Define Lyapunov's function by $V(x)$, we will substitute the found coefficients in a gradient (**):

$$
\nabla V=\left|\begin{array}{c}
x_{1}-x_{2} \\
x_{1}+\frac{x_{2}}{x_{1}^{2}}+\frac{x_{2}^{3}}{x_{1}^{2}}
\end{array}\right|=\left|\nabla V_{1}\right|
$$

Having used expression (*), we will obtain Lyapunov's function of the following look:

$$
\begin{aligned}
& V(x)=\int_{0}^{x} \nabla V^{T} d x=\int_{0}^{x_{1}} \nabla V_{1}\left(\xi_{1}, 0\right) d \xi_{1}+\int_{0}^{x_{2}} \nabla V_{2}\left(x_{1}, \xi_{2}\right) d \xi_{2}= \\
& =\int_{0}^{x_{1}} \xi_{1} d \xi_{1}+\int_{0}^{x_{2}}\left(x_{1}+\frac{\xi_{2}}{x_{1}^{2}}+\frac{\xi_{2}^{3}}{x_{1}^{2}}\right) d \xi_{2}=\frac{1}{2} x_{1}^{2}+x_{1} x_{2}+\frac{x_{2}^{2}}{2 x_{1}^{2}}+\frac{x_{2}^{4}}{4 x_{1}^{2}}>0 .
\end{aligned}
$$

Hence, the initial system is asymptotically stable according to Lyapunov.
It is reasonable to emphasize the basic conclusions once more:
a) $\begin{cases}V>0 & \text { - function must be one of fixed positive-sign; } \\ \dot{V}<0 & \text { - differential must be one of strictly negative-sign, which provides }\end{cases}$ asymptomatically stability to the system according to Lyapunov.
b) $\begin{cases}V>0 & \text { - function should be one of fixed positive-sign; } \\ \dot{V} \leq 0 & \text { - its full differential may be one of fixed negative-sign, which } \\ & \text { provides stability to the system according to Lyapunov. }\end{cases}$
c) $\begin{cases}V>0 & \text { - the both functions are of fixed positive-sign, which provides } \\ \text { instability to the system according to Lyapunov. }\end{cases}$ c) $\{\dot{V}>0$ instability to the system according to Lyapunov.

Task: Obtain dynamic equations of nonlinear ACS in the state-space according to the set scheme (by variants). Investigate on stability by the second (direct) method of Lyapunov, using Schultz-Gibson's method.

Variants:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

